Modules with Dedekind Finite Endomorphism Rings
نویسندگان
چکیده
This article is a survey of modules whose endomorphism rings are Dedekind finite, Hopfian or co-Hopfian. We summarise the properties of such modules and present unified proofs of known results and generalisations to new structure theorems. MSC 2010. 16S50, 16D80.
منابع مشابه
Countable Exchange and Full Exchange Rings
We show that a Dedekind-finite, semi-π-regular ring with a “nice” topology is an א0-exchange ring, and the same holds true for a strongly clean ring with a “nice” topology. We generalize the argument to show that a Dedekind-finite, semi-regular ring with a “nice” topology is a full exchange ring. Putting these results in the language of modules, we show that a cohopfian module with finite excha...
متن کامل. R A ] 1 1 Ju n 20 04 THE COUNTABLE AND FULL EXCHANGE PROPERTIES PACE
We show that cohopfian modules with finite exchange have countable exchange. In particular, a module whose endomorphism ring is Dedekind-finite and π-regular has the countable exchange property. We also show that a module whose en-domorphism ring is Dedekind-finite and regular has full exchange. Finally, working modulo the Jacobson radical, we prove that any module with the (C 2) property and a...
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملSerial Rings
A module is called uniseriat if it has a unique composition series of finite length. A ring (always with 1) is called serial if its right and left free modules are direct sums of uniserial modules. Nakayama, who called these rings generalized uniserial rings, proved [21, Theorem 171 that every finitely generated module over a serial ring is a direct sum of uniserial modules. In section one we g...
متن کامل